Simpleio

 /* Chapter 9 - Program 1 - SIMPLEIO.C */

#include <stdio.h> /* standard header for input/output */

int main()

{

int c;

 printf("Enter any characters, X = halt program.\n");

 do

 {

 c = getchar(); /* get a single character from the kb */

 putchar(c); /* display the character on the monitor */

 } while (c != 'X'); /* until an X is hit */

 printf("\nEnd of program.\n");

 return 0;

}

/* Result of execution

Enter any characters, X = halt program.

(The output depends on what you type in.)

End of program.

*/

Singleio

 /* Chapter 9 - Program 2 - SINGLEIO.C */

#include "stdio.h"

#include "conio.h"

int main()

{

int c;

 printf("Enter any characters, terminate program with X\n");

 do

 {

 c = _getch(); /* get a character */

 putchar(c); /* display the hit key */

 } while (c != 'X');

 printf("\nEnd of program.\n");

 return 0;

}

/* Result of execution

Enter any characters, terminate program with X

(The output depends on the characters you type in.)

End of program.

*/

Betterin

 /* Chapter 9 - Program 3 - BETTERIN.C */

#include <stdio.h>

#include <conio.h>

#define CR 13 /* this defines CR to be 13 */

#define LF 10 /* this defines LF to be 10 */

int main()

{

int c;

 printf("Input any characters, hit X to stop.\n");

 do

 {

 c = _getch(); /* get a character */

 putchar(c); /* display the hit key */

 if (c == CR) putchar(LF); /* if it is a carriage return */

 /* put out a linefeed too */

 } while (c != 'X');

 printf("\nEnd of program.\n");

 return 0;

}

/* Result of execution

Input any characters, hit X to stop.

(The output depends on what characters you enter.)

End of program.

*/

Intin

 /* Chapter 9 - Program 4 - INTIN.C */

#include <stdio.h>

int main()

{

int valin;

 printf("Input a number from 0 to 32767, stop with 100.\n");

 do {

 scanf("%d", &valin); /* read a single integer value in */

 printf("The value is %d\n", valin);

 } while (valin != 100);

 printf("End of program\n");

 return 0;

}

/* Result of execution

Input a number from 0 to 32767, stop with 100.

(The output depends on the numbers you type in.)

End of program

*/

Stringin

 /* Chapter 9 - Program 5 - STRINGIN.C */

#include <stdio.h>

int main()

{

char big[25];

 printf("Input a character string, up to 25 characters.\n");

 printf("An X in column 1 causes the program to stop.\n");

 do

 {

 scanf("%s", big);

 printf("The string is -> %s\n", big);

 } while (big[0] != 'X');

 printf("End of program.\n");

 return 0;

}

/* Result of execution

Input a character string, up to 25 characters.

An X in column 1 causes the program to stop.

(The output depends on what you type in.)

End of program.

*/

Inmem

 /* Chapter 9 - Program 6 - INMEM.C */

#include <stdio.h>

int main()

{

int numbers[5], result[5], index;

char line[80];

 numbers[0] = 74;

 numbers[1] = 18;

 numbers[2] = 33;

 numbers[3] = 30;

 numbers[4] = 97;

 sprintf(line,"%d %d %d %d %d\n", numbers[0], numbers[1],

 numbers[2], numbers[3], numbers[4]);

 printf("%s", line);

 sscanf(line,"%d %d %d %d %d", &result[4], &result[3],

 (result+2), (result+1), result);

 for (index = 0 ; index < 5 ; index++)

 printf("The final result is %d\n", result[index]);

 return 0;

}

/* Result of execution

74 18 33 30 97

The final result is 97

The final result is 30

The final result is 33

The final result is 18

The final result is 74

*/

Special

 /* Chapter 9 - Program 7 - SPECIAL.C */

#include <stdio.h>

#include <stdlib.h> /* Prototype for exit() */

int main()

{

int index;

 for (index = 0 ; index < 6 ; index++) {

 printf("This line goes to the standard output.\n");

 fprintf(stderr, "This line goes to the error device.\n");

 }

 exit(4); /* This can be tested with the DOS errorlevel

 command in a batch file. The number returned

 is used as follows;

 IF ERRORLEVEL 4 GOTO FOUR

 (continue here if less than 4)

 .

 .

 GOTO DONE

 :FOUR

 (continue here if 4 or greater)

 .

 .

 :DONE

 */

}

/* Result of execution (without redirection)

This line goes to the standard output.

This line goes to the error device.

This line goes to the standard output.

This line goes to the error device.

This line goes to the standard output.

This line goes to the error device.

This line goes to the standard output.

This line goes to the error device.

This line goes to the standard output.

This line goes to the error device.

This line goes to the standard output.

This line goes to the error device.

*/

Formout

 /* Chapter 10 - Program 1 - FORMOUT.C */

#include <stdio.h>

#include <string.h>

int main()

{

FILE *fp;

char stuff[25];

int index;

 fp = fopen("TENLINES.TXT", "w"); /* open for writing */

 strcpy(stuff, "This is an example line.");

 for (index = 1 ; index <= 10 ; index++)

 fprintf(fp, "%s Line number %d\n", stuff, index);

 fclose(fp); /* close the file before ending program */

 return 0;

}

/* Result of execution

(The following is written to the file named TENLINES.TXT)

This is an example line. Line number 1

This is an example line. Line number 2

This is an example line. Line number 3

This is an example line. Line number 4

This is an example line. Line number 5

This is an example line. Line number 6

This is an example line. Line number 7

This is an example line. Line number 8

This is an example line. Line number 9

This is an example line. Line number 10

*/

Charout

 /* Chapter 10 - Program 2 - CHAROUT.C */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main()

{

FILE *point;

char others[35];

int indexer, count;

 strcpy(others, "Additional lines.");

 point = fopen("tenlines.txt", "a"); /* open for appending */

 if (point == NULL)

 {

 printf("File failed to open\n");

 exit (EXIT_FAILURE);

 }

 for (count = 1 ; count <= 10 ; count++)

 {

 for (indexer = 0 ; others[indexer] ; indexer++)

 putc(others[indexer], point); /* output one character */

 putc('\n', point); /* output a linefeed */

 }

 fclose(point);

 return EXIT_SUCCESS;

}

/* Result of output (appended to TENLINES.TXT)

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

*/

Readchar

 /* Chapter 10 - Program 3 - READCHAR.C */

#include <stdio.h>

#include <stdlib.h>

int main()

{

FILE *funny;

int c;

 funny = fopen("TENLINES.TXT", "r");

 if (funny == NULL)

 {

 printf("File doesn't exist\n");

 exit (EXIT_FAILURE);

 }

 else

 {

 do

 {

 c = getc(funny); /* get one character from the file */

 putchar(c); /* display it on the monitor */

 } while (c != EOF); /* repeat until EOF (end of file) */

 }

 fclose(funny);

 return EXIT_SUCCESS;

}

/* Result of execution

This is an example line. Line number 1

This is an example line. Line number 2

This is an example line. Line number 3

This is an example line. Line number 4

This is an example line. Line number 5

This is an example line. Line number 6

This is an example line. Line number 7

This is an example line. Line number 8

This is an example line. Line number 9

This is an example line. Line number 10

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

*/

Readtext

 /* Chapter 10 - Program 4 - READTEXT.C */

#include <stdio.h>

int main()

{

FILE *fp1;

char oneword[100];

int c;

 fp1 = fopen("TENLINES.TXT", "r");

 do

 {

 c = fscanf(fp1, "%s", oneword); /* get one word from file */

 printf("%s\n", oneword); /* display it on the monitor */

 } while (c != EOF); /* repeat until EOF */

 fclose(fp1);

 return 0;

}

/* Result of execution

This

is

an

example

line.

Line

number

1

This

is

an

 ... (Many other lines) ...

Additional

lines.

Additional

lines.

lines.

*/

Readgood

 /* Chapter 10 - Program 5 - READGOOD.C */

#include <stdio.h>

int main()

{

FILE *fp1;

char oneword[100];

int c;

 fp1 = fopen("TENLINES.TXT", "r");

 do

 {

 c = fscanf(fp1, "%s", oneword); /* get one word from file */

 if (c != EOF)

 printf("%s\n", oneword); /* display it on the monitor */

 } while (c != EOF); /* repeat until EOF */

 fclose(fp1);

 return 0;

}

/* Result of execution

This

is

an

example

line.

Line

number

1

This

is

 ... (Many other lines.) ...

Additional

lines.

Additional

lines.

*/

Readline

 /* Chapter 10 - Program 6 - READLINE.C */

#include <stdio.h>

#include <stdlib.h>

int main()

{

FILE *fp1;

char oneword[100];

char *c;

 fp1 = fopen("TENLINES.TXT", "r");

 if (fp1 == NULL)

 {

 printf("File failed to open\n");

 exit (EXIT_FAILURE);

 }

 do

 {

 c = fgets(oneword, 100, fp1); /* get one line from the file */

 if (c != NULL)

 printf("%s", oneword); /* display it on the monitor */

 } while (c != NULL); /* repeat until NULL */

 fclose(fp1);

 return EXIT_SUCCESS;

}

/* Result of execution

This is an example line. Line number 1

This is an example line. Line number 2

This is an example line. Line number 3

This is an example line. Line number 4

This is an example line. Line number 5

This is an example line. Line number 6

This is an example line. Line number 7

This is an example line. Line number 8

This is an example line. Line number 9

This is an example line. Line number 10

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

Additional lines.

*/

Anyfile

 /* Chapter 10 - Program 7 - ANYFILE.C */

#include <stdio.h>

#include <stdlib.h>

int main()

{

FILE *fp1;

char oneword[100], filename[25];

char *c;

 printf("Enter filename -> ");

 scanf("%s", filename); /* read the desired filename */

 fp1 = fopen(filename, "r");

 if (fp1 == NULL)

 {

 printf("File failed to open\n");

 exit (EXIT_FAILURE);

 }

 do

 {

 c = fgets(oneword, 100, fp1); /* get one line from the file */

 if (c != NULL)

 printf("%s", oneword); /* display it on the monitor */

 } while (c != NULL); /* repeat until NULL */

 fclose(fp1);

 return EXIT_SUCCESS;

}

/* Result of execution

(The file selected is listed on the monitor)

*/

Printdat

 /* Chapter 10 - Program 8 - PRINTDAT.C */

#include <stdio.h>

#include <stdlib.h>

int main()

{

FILE *funny, *printer;

int c;

 funny = fopen("TENLINES.TXT", "r"); /* open input file */

 if (funny == NULL)

 {

 printf("File failed to open\n");

 exit (EXIT_FAILURE);

 }

 printer = fopen("PRN", "w"); /* open printer file */

 if (printer == NULL)

 {

 printf("Printer not available for use\n");

 exit (EXIT_FAILURE);

 }

 do

 {

 c = getc(funny); /* get one character from the file */

 if (c != EOF)

 {

 putchar(c); /* display it on the monitor */

 putc(c, printer); /* print the character */

 }

 } while (c != EOF); /* repeat until EOF (end of file) */

 fclose(funny);

 fclose(printer);

 return 0;

}

/* Result of execution

(The file named TENLINES.TXT is listed

 on the printer, and it is listed on the monitor.)

*/

Struct1

 /* Chapter 11 - Program 1 - STRUCT1.C */

#include <stdio.h>

struct

{

 char initial; /* last name initial */

 int age; /* childs age */

 int grade; /* childs grade in school */

} boy, girl;

int main()

{

 boy.initial = 'R';

 boy.age = 15;

 boy.grade = 75;

 girl.age = boy.age - 1; /* she is one year younger */

 girl.grade = 82;

 girl.initial = 'H';

 printf("%c is %d years old and got a grade of %d\n",

 girl.initial, girl.age, girl.grade);

 printf("%c is %d years old and got a grade of %d\n",

 boy.initial, boy.age, boy.grade);

 return 0;

}

/* Result of execution

H is 14 years old and got a grade of 82

R is 15 years old and got a grade of 75

*/

Struct2

 /* Chapter 11 - Program 2 - STRUCT2.C */

#include <stdio.h>

struct

{

 char initial;

 int age;

 int grade;

} kids[12];

int main()

{

int index;

 for (index = 0 ; index < 12 ; index++)

 {

 kids[index].initial = 'A' + index;

 kids[index].age = 16;

 kids[index].grade = 84;

 }

 kids[3].age = kids[5].age = 17;

 kids[2].grade = kids[6].grade = 92;

 kids[4].grade = 57;

 kids[10] = kids[4]; /* Structure assignment */

 for (index = 0 ; index < 12 ; index++)

 printf("%c is %d years old and got a grade of %d\n",

 kids[index].initial, kids[index].age, kids[index].grade);

 return 0;

}

/* Result of execution

A is 16 years old and got a grade of 84

B is 16 years old and got a grade of 84

C is 16 years old and got a grade of 92

D is 17 years old and got a grade of 84

E is 16 years old and got a grade of 57

F is 17 years old and got a grade of 84

G is 16 years old and got a grade of 92

H is 16 years old and got a grade of 84

I is 16 years old and got a grade of 84

J is 16 years old and got a grade of 84

E is 16 years old and got a grade of 57

L is 16 years old and got a grade of 84

*/

Struct3

 /* Chapter 11 - Program 3 - STRUCT3.C */

#include <stdio.h>

struct

{

 char initial;

 int age;

 int grade;

} kids[12], *point, extra;

int main()

{

int index;

 for (index = 0 ; index < 12 ; index++)

 {

 point = kids + index;

 point->initial = 'A' + index;

 point->age = 16;

 point->grade = 84;

 }

 kids[3].age = kids[5].age = 17;

 kids[2].grade = kids[6].grade = 92;

 kids[4].grade = 57;

 for (index = 0 ; index < 12 ; index++)

 {

 point = kids + index;

 printf("%c is %d years old and got a grade of %d\n",

 (*point).initial, kids[index].age, point->grade);

 }

 extra = kids[2]; /* Structure assignment */

 extra = *point; /* Structure assignment */

 return 0;

}

/* Result of execution

A is 16 years old and got a grade of 84

B is 16 years old and got a grade of 84

C is 16 years old and got a grade of 92

D is 17 years old and got a grade of 84

E is 16 years old and got a grade of 57

F is 17 years old and got a grade of 84

G is 16 years old and got a grade of 92

H is 16 years old and got a grade of 84

I is 16 years old and got a grade of 84

J is 16 years old and got a grade of 84

K is 16 years old and got a grade of 84

L is 16 years old and got a grade of 84

*/

Nested

 /* Chapter 11 - Program 4 - NESTED.C */

#include <string.h>

struct person

{

 char name[25];

 int age;

 char status; /* M = married, S = single */

};

struct alldat

{

 int grade;

 struct person descrip;

 char lunch[25];

};

int main()

{

struct alldat student[53];

struct alldat teacher, sub;

 teacher.grade = 94;

 teacher.descrip.age = 34;

 teacher.descrip.status = 'M';

 strcpy(teacher.descrip.name, "Mary Smith");

 strcpy(teacher.lunch, "Baloney sandwich");

 sub.descrip.age = 87;

 sub.descrip.status = 'M';

 strcpy(sub.descrip.name, "Old Lady Brown");

 sub.grade = 73;

 strcpy(sub.lunch, "Yogurt and toast");

 student[1].descrip.age = 15;

 student[1].descrip.status = 'S';

 strcpy(student[1].descrip.name, "Billy Boston");

 strcpy(student[1].lunch, "Peanut Butter");

 student[1].grade = 77;

 student[7].descrip.age = 14;

 student[12].grade = 87;

 return 0;

}

/* Result of execution

(There is no output from this program)

*/

Union1

 /* Chapter 11 - Program 5 - UNION1.C */

#include <stdio.h>

int main()

{

 union

 {

 int value; /* This is the first part of the union */

 struct

 {

 char first; /* These two values are the second part of it */

 char second;

 } half;

 } number;

long index;

 for (index = 12 ; index < 300000L ; index += 35231L)

 {

 number.value = index;

 printf("%8x %6x %6x\n", number.value,

 number.half.first, number.half.second);

 }

 return 0;

}

/* Result of execution on a 16 bit system

 c c 0

 89ab ffab ff89

 134a 4a 13

 9ce9 ffe9 ff9c

 2688 ff88 26

 b027 27 ffb0

 39c6 ffc6 39

 c365 65 ffc3

 4d04 4 4d

*/

Union2

 /* Chapter 11 - Program 6 - UNION2.C */

#include <stdio.h>

#define AUTO 1

#define BOAT 2

#define PLANE 3

#define SHIP 4

struct automobile /* structure for an automobile */

{

 int tires;

 int fenders;

 int doors;

};

typedef struct /* structure for a boat or ship */

{

 int displacement;

 char length;

} BOATDEF;

struct

{

 char vehicle; /* what type of vehicle? */

 int weight; /* gross weight of vehicle */

 union /* type-dependent data */

 {

 struct automobile car; /* part 1 of the union */

 BOATDEF boat; /* part 2 of the union */

 struct

 {

 char engines;

 int wingspan;

 } airplane; /* part 3 of the union */

 BOATDEF ship; /* part 4 of the union */

 } vehicle_type;

 int value; /* value of vehicle in dollars */

 char owner[32]; /* owners name */

} ford, sun_fish, piper_cub; /* three variable structures */

int main()

{

 /* define a few of the fields as an illustration */

 ford.vehicle = AUTO;

 ford.weight = 2742; /* with a full gas tank */

 ford.vehicle_type.car.tires = 5; /* including the spare */

 ford.vehicle_type.car.doors = 2;

 sun_fish.value = 3742; /* trailer not included */

 sun_fish.vehicle_type.boat.length = 20;

 piper_cub.vehicle = PLANE;

 piper_cub.vehicle_type.airplane.wingspan = 27;

 if (ford.vehicle == AUTO) /* which it is in this case */

 printf("The ford has %d tires.\n",

 ford.vehicle_type.car.tires);

 if (piper_cub.vehicle == AUTO) /* which it is not in this case */

 printf("The plane has %d tires.\n",

 piper_cub.vehicle_type.car.tires);

 return 0;

}

/* Result of execution

The ford has 5 tires.

*/

Bitfield

 /* Chapter 11 - Program 7 - BITFIELD.C */

#include <stdio.h>

union

{

 int index;

 struct

 {

 unsigned int x : 1;

 unsigned int y : 2;

 unsigned int z : 2;

 } bits;

} number;

int main()

{

 for (number.index = 0 ; number.index < 20 ; number.index++)

 {

 printf("index = %3d, bits = %3d%3d%3d\n", number.index,

 number.bits.z, number.bits.y, number.bits.x);

 }

 return 0;

}

/* Result of execution

index = 0, bits = 0 0 0

index = 1, bits = 0 0 1

index = 2, bits = 0 1 0

index = 3, bits = 0 1 1

index = 4, bits = 0 2 0

index = 5, bits = 0 2 1

index = 6, bits = 0 3 0

index = 7, bits = 0 3 1

index = 8, bits = 1 0 0

index = 9, bits = 1 0 1

index = 10, bits = 1 1 0

index = 11, bits = 1 1 1

index = 12, bits = 1 2 0

index = 13, bits = 1 2 1

index = 14, bits = 1 3 0

index = 15, bits = 1 3 1

index = 16, bits = 2 0 0

index = 17, bits = 2 0 1

index = 18, bits = 2 1 0

index = 19, bits = 2 1 1

*/

Style3.h

 /* Chapter 11 - Program 8 - STYLE3.H */

/* STYLE3.H - Style illustration file */

/* copyright - Coronado Enterprises - 1996 */

/* This program does nothing useful as far as being an executable */

/* program. It is intended to be simply a guide to style. It is */

/* assumed that there are other files that will be used with this */

/* since other information is included here. */

#define START 2

#define MAX_ID 2564

#define CLASSIFICATION_1 12

#define CLASSIFICATION_2 17

#define CLASSIFICATION_3 20

#define LINE_LENGTH 25

struct person

{

 char name[LINE_LENGTH];

 int age;

 char status; /* M = married, S = single */

};

struct alldat

{

 int grade;

 struct person descrip;

 char lunch[LINE_LENGTH];

};

struct tuition

{

 int years_resident;

 int hours_completed;

 float scholarship_amount;

 float total_tuition;

};

 /* Function prototypes for all functions */

float get_tuition(int student_number);

float get_arrears(int student_number, struct tuition student_info);

void print_data(int student_number, int key_code);

float get_gpa(int student_number);

Style3.c

 /* Chapter 11 - Program 9 - STYLE3.C */

/* STYLE3.C - Style illustration file */

/* copyright - Coronado Enterprises - 1996 */

/* The only purpose for this program is to illustrate a typical */

/* style that can be used in any application. */

#include <string.h>

#include "style3.h"

int main()

{

struct alldat student[53];

struct alldat teacher, sub;

 teacher.grade = 94;

 teacher.descrip.age = 34;

 teacher.descrip.status = 'M';

 strcpy(teacher.descrip.name, "Mary Smith");

 strcpy(teacher.lunch, "Baloney sandwich");

 sub.descrip.age = 87;

 sub.descrip.status = 'M';

 strcpy(sub.descrip.name, "Old Lady Brown");

 sub.grade = 73;

 strcpy(sub.lunch, "Yogurt and toast");

 student[1].descrip.age = 15;

 student[1].descrip.status = 'S';

 strcpy(student[1].descrip.name, "Billy Boston");

 strcpy(student[1].lunch, "Peanut Butter");

 student[1].grade = 77;

 student[7].descrip.age = 14;

 student[12].grade = 87;

 return 0;

}

/* Result of execution

(There is no output from this program)

*/

Dynlist

 /* Chapter 12 - Program 1 - DYNLIST.C */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

struct animal

{

 char name[25];

 char breed[25];

 int age;

} *pet1, *pet2, *pet3;

int main()

{

 pet1 = (struct animal *)malloc(sizeof(struct animal));

 /* It is an error to fail to check the allocation, see text. */

 /* We will check for proper allocation in the next program. */

 strcpy(pet1->name, "General");

 strcpy(pet1->breed, "Mixed Breed");

 pet1->age = 1;

 pet2 = pet1; /* pet2 now points to the above data structure */

 pet1 = (struct animal *)malloc(sizeof(struct animal));

 strcpy(pet1->name, "Frank");

 strcpy(pet1->breed, "Labrador Retriever");

 pet1->age = 3;

 pet3 = (struct animal *)malloc(sizeof(struct animal));

 strcpy(pet3->name, "Krystal");

 strcpy(pet3->breed, "German Shepherd");

 pet3->age = 4;

 /* now print out the data described above */

 printf("%s is a %s, and is %d years old.\n",

 pet1->name, pet1->breed, pet1->age);

 printf("%s is a %s, and is %d years old.\n",

 pet2->name, pet2->breed, pet2->age);

 printf("%s is a %s, and is %d years old.\n",

 pet3->name, pet3->breed, pet3->age);

 pet1 = pet3; /* pet1 now points to the same structure that */

 /* pet3 points to */

 free(pet3); /* this frees up one structure */

 free(pet2); /* this frees up one more structure */

/* free(pet1); this cannot be done, see explanation in text */

 return 0;

}

/* Result of execution

Frank is a Laborador Retriever, and is 3 years old.

General is a Mixed Breed, and is 1 years old.

Krystal is a German Shepherd, and is 4 years old.

*/

Bigdynl

 /* Chapter 12 - Program 2 - BIGDYNL.C */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

struct animal

{

 char name[25];

 char breed[25];

 int age;

} *pet[12], *point; /* this defines 13 pointers, no variables */

int main()

{

int index;

 /* first, fill the dynamic structures with nonsense */

 for (index = 0 ; index < 12 ; index++)

 {

 pet[index] = (struct animal *)malloc(sizeof(struct animal));

 if (pet[index] == NULL)

 {

 printf("Memory allocation failed\n");

 exit (EXIT_FAILURE);

 }

 strcpy(pet[index]->name, "General");

 strcpy(pet[index]->breed, "Mixed Breed");

 pet[index]->age = 4;

 }

 pet[4]->age = 12; /* these lines are simply to */

 pet[5]->age = 15; /* put some nonsense data into */

 pet[6]->age = 10; /* a few of the fields. */

 /* now print out the data described above */

 for (index = 0 ; index < 12 ; index++)

 {

 point = pet[index];

 printf("%s is a %s, and is %d years old.\n",

 point->name, point->breed, point->age);

 }

 /* good programming practice dictates that we free up the */

 /* dynamically allocated space before we quit. */

 for (index = 0 ; index < 12 ; index++)

 free(pet[index]);

 return EXIT_SUCCESS;

}

/* Result of execution

General is a Mixed Breed, and is 4 years old.

General is a Mixed Breed, and is 4 years old.

General is a Mixed Breed, and is 4 years old.

General is a Mixed Breed, and is 4 years old.

General is a Mixed Breed, and is 12 years old.

General is a Mixed Breed, and is 15 years old.

General is a Mixed Breed, and is 10 years old.

General is a Mixed Breed, and is 4 years old.

General is a Mixed Breed, and is 4 years old.

General is a Mixed Breed, and is 4 years old.

General is a Mixed Breed, and is 4 years old.

General is a Mixed Breed, and is 4 years old.

*/

Dynlink

 /* Chapter 12 - Program 3 - DYNLINK.C */

#include <stdio.h> /* this is needed to define the NULL */

#include <string.h>

#include <stdlib.h>

#define RECORDS 6

struct animal

{

 char name[25]; /* The animals name */

 char breed[25]; /* The type of animal */

 int age; /* The animals age */

 struct animal *next; /* pointer to another struct of this type */

} *point, *start, *prior; /* this defines 3 pointers, no variables */

int index;

int main()

{

 /* the first record is always a special case */

 start = (struct animal *)malloc(sizeof(struct animal));

 if (start == NULL)

 {

 printf("Memory allocation failed\n");

 exit (EXIT_FAILURE);

 }

 strcpy(start->name, "General");

 strcpy(start->breed, "Mixed Breed");

 start->age = 4;

 start->next = NULL;

 prior = start;

 /* a loop can be used to fill in the rest once it is started */

 for (index = 0 ; index < RECORDS ; index++)

 {

 point = (struct animal *)malloc(sizeof(struct animal));

 if (point == NULL)

 {

 printf("Memory allocation failed\n");

 exit (EXIT_FAILURE);

 }

 strcpy(point->name, "Frank");

 strcpy(point->breed, "Laborador Retriever");

 point->age = 3;

 prior->next = point; /* point last "next" to this record */

 point->next = NULL; /* point this "next" to NULL */

 prior = point; /* this is now the prior record */

 }

 /* now print out the data described above */

 point = start;

 do

 {

 prior = point->next;

 printf("%s is a %s, and is %d years old.\n",

 point->name, point->breed, point->age);

 point = point->next;

 } while (prior != NULL);

 /* good programming practice dictates that we free up the */

 /* dynamically allocated space before we quit. */

 point = start; /* first block of group */

 do

 {

 prior = point->next; /* next block of data */

 free(point); /* free present block */

 point = prior; /* point to next */

 } while (prior != NULL); /* quit when next is NULL */

 return EXIT_SUCCESS;

}

/* Result of execution

General is a Mixed Breed, and is 4 years old.

Frank is a Laborador Retriever, and is 3 years old.

Frank is a Laborador Retriever, and is 3 years old.

Frank is a Laborador Retriever, and is 3 years old.

Frank is a Laborador Retriever, and is 3 years old.

Frank is a Laborador Retriever, and is 3 years old.

Frank is a Laborador Retriever, and is 3 years old.

*/

Uplow

 /* Chapter 13 - Program 1 - UPLOW.C */

#include <stdio.h>

#include <ctype.h> /* Note - your compiler may not need this */

void mix_up_the_chars(char line[]);

int main()

{

FILE *fp;

char line[80], filename[24];

char *c;

 printf("Enter filename -> ");

 scanf("%s", filename);

 fp = fopen(filename, "r");

 do

 {

 c = fgets(line, 80, fp); /* get a line of text */

 if (c != NULL)

 {

 mix_up_the_chars(line);

 }

 } while (c != NULL);

 fclose(fp);

 return 0;

}

/* This function turns all upper case characters into lower case, */

/* and all lower case to upper case. It ignores all other */

/* characters. */

void mix_up_the_chars(char line[])

{

int index;

 for (index = 0 ; line[index] != 0 ; index++)

 {

 if (isupper(line[index])) /* 1 if upper case */

 line[index] = tolower(line[index]);

 else

 {

 if (islower(line[index])) /* 1 if lower case */

 line[index] = toupper(line[index]);

 }

 }

 printf("%s", line);

}

/* Result of execution

 (The selected file is displayed on the monitor with all of

 the upper case characters converted to lower case, and all

 of the lower case characters converted to upper case.)

*/

Charclas

 /* Chapter 13 - Program 2 - CHARCLAS.C */

#include <stdio.h>

#include <ctype.h> /* Note - your compiler may not need this */

void count_the_data(char line[]);

int main()

{

FILE *fp;

char line[80], filename[24];

char *c;

 printf("Enter filename -> ");

 scanf("%s", filename);

 fp = fopen(filename, "r");

 do

 {

 c = fgets(line, 80, fp); /* get a line of text */

 if (c != NULL)

 {

 count_the_data(line);

 }

 } while (c != NULL);

 fclose(fp);

 return 0;

}

void count_the_data(char line[])

{

int whites, chars, digits;

int index;

 whites = chars = digits = 0;

 for (index = 0 ; line[index] != 0 ; index++)

 {

 if (isalpha(line[index])) /* 1 if line[] is alphabetic */

 chars++;

 if (isdigit(line[index])) /* 1 if line[] is a digit */

 digits++;

 if (isspace(line[index])) /* 1 if line[] is blank, tab, */

 whites++; /* or newline */

 } /* end of counting loop */

 printf("%3d%3d%3d %s", whites, chars, digits, line);

}

/* Result of execution (This is a portion of the output, but the

 comments have been removed to allow this section to be

 included as one large comment. This output assumes that

 CHARCLAS.C is selected as the input file.)

 37 23 3

 2 13 0 #include <stdio.h>

 18 43 0 #include <ctype.h>

 1 0 0

 3 24 0 void count_the_data(char line[]);

 1 0 0

 2 7 0 int main()

 1 0 0 {

 2 6 0 FILE *fp;

 3 16 4 char line[80], filename[24];

 2 5 0 char *c;

 (This pattern continues for the rest of the file)

*/

Bitops

 /* Chapter 13 - Program 3 - BITOPS.C */

#include <stdio.h>

int main()

{

char mask;

char number[6];

char and, or, xor, inv, index;

 number[0] = 0X00;

 number[1] = 0X11;

 number[2] = 0X22;

 number[3] = 0X44;

 number[4] = 0X88;

 number[5] = 0XFF;

 printf(" nmbr mask and or xor inv\n");

 mask = 0X0F;

 for (index = 0 ; index <= 5 ; index++)

 {

 and = mask & number[index];

 or = mask | number[index];

 xor = mask ^ number[index];

 inv = ~number[index];

 printf("%5x %5x %5x %5x %5x %5x\n",

 number[index], mask, and, or, xor, inv);

 }

 printf("\n");

 mask = 0X22;

 for (index = 0 ; index <= 5 ; index++)

 {

 and = mask & number[index];

 or = mask | number[index];

 xor = mask ^ number[index];

 inv = ~number[index];

 printf("%5x %5x %5x %5x %5x %5x\n",

 number[index], mask, and, or, xor, inv);

 }

 return 0;

}

/* Result of execution

 nmbr mask and or xor inv

 0 f 0 f f ffff

 11 f 1 1f 1e ffee

 22 f 2 2f 2d ffdd

 44 f 4 4f 4b ffbb

 ff88 f 8 ff8f ff87 77

 ffff f f ffff fff0 0

 0 22 0 22 22 ffff

 11 22 0 33 33 ffee

 22 22 22 22 0 ffdd

 44 22 0 66 66 ffbb

 ff88 22 0 ffaa ffaa 77

 ffff 22 22 ffff ffdd 0

*/

Shifter

 /* Chapter 13 - Program 4 - SHIFTER.C */

#include <stdio.h>

int main()

{

int small, big, index, count;

 printf(" shift left shift right\n\n");

 small = 1;

 big = 0x4000;

 for(index = 0;index < 17;index++)

 {

 printf("%8d %8x %8d %8x\n",small,small,big,big);

 small = small << 1;

 big = big >> 1;

 }

 printf("\n");

 count = 2;

 small = 1;

 big = 0x4000;

 for(index = 0;index < 9;index++)

 {

 printf("%8d %8x %8d %8x\n",small,small,big,big);

 small = small << count;

 big = big >> count;

 }

 return 0;

}

/* Result of execution

 1 1 16384 4000

 2 2 8192 2000

 4 4 4096 1000

 8 8 2048 800

 16 10 1024 400

 32 20 512 200

 64 40 256 100

 128 80 128 80

 256 100 64 40

 512 200 32 20

 1024 400 16 10

 2048 800 8 8

 4096 1000 4 4

 8192 2000 2 2

 16384 4000 1 1

 -32768 8000 0 0

 0 0 0 0

 1 1 16384 4000

 4 4 4096 1000

 16 10 1024 400

 64 40 256 100

 256 100 64 40

 1024 400 16 10

 4096 1000 4 4

 16384 4000 1 1

 0 0 0 0

*/

