Firstex

#include <stdio.h>

int main()

{

int index;

 for (index = 0 ; index < 7 ; index = index + 1)

 printf("First example program.\n");

 return 0;

}

Trivial

main()

{

}

Wrtsome

#include <stdio.h>

int main()

{

 printf("This is a line of text to output.");

 return 0;

}

Wrtmore

#include <stdio.h>

int main()

{

 printf("This is a line of text to output.\n");

 printf("And this is another ");

 printf("line of text.\n\n");

 printf("This is a third line.\n");

 return 0;

}

Oneint

#include <stdio.h>

int main()

{

int index;

 index = 13;

 printf("The value of the index is %d\n", index);

 index = 27;

 printf("The value of the index is %d\n", index);

 index = 10;

 printf("The value of the index is %d\n", index);

 return 0;

}

Comments

#include <stdio.h>

 /* This is a comment ignored by the compiler */

int main() /* This is another comment ignored by the compiler */

{

 printf("We are looking at how comments are "); /* A comment is

 allowed to be

 continued on

 another line */

 printf("used in C.\n");

 return 0;

}

 /* One more comment for effect */

Goodform

#include <stdio.h>

int main() /* Main program starts here */

{

 printf("Good form ");

 printf ("can aid in ");

 printf ("understanding a program.\n");

 printf("And bad form ");

 printf ("can make a program ");

 printf ("unreadable.\n");

 return 0;

}

Uglyform

#include <stdio.h>

int main() /* Main program starts

here */{printf("Good form ");printf("can aid in ");

printf("understanding a program.\n")

;printf("And bad form ");printf("can make a program ");

printf("unreadable.\n");return 0;}

While

 /* Chapter 3 - Program 1 - WHILE.C */

/* This is an example of a "while" loop */

#include <stdio.h>

int main()

{

int count;

 count = 0;

 while (count < 6)

 {

 printf("The value of count is %d\n", count);

 count = count + 1;

 }

 return 0;

}

/* Result of execution

The value of count is 0

The value of count is 1

The value of count is 2

The value of count is 3

The value of count is 4

The value of count is 5

*/

Dowhile

 /* Chapter 3 - Program 2 - DOWHILE.C */

/* This is an example of a do-while loop */

#include <stdio.h>

int main()

{

int i;

 i = 0;

 do

 {

 printf("The value of i is now %d\n", i);

 i = i + 1;

 } while (i < 5);

 return 0;

}

/* Result of execution

The value of i is now 0

The value of i is now 1

The value of i is now 2

The value of i is now 3

The value of i is now 4

*/

Forloop

 /* Chapter 3 - Program 3 - FORLOOP.C */

/* This is an example of a for loop */

#include <stdio.h>

int main()

{

int index;

 for(index = 0 ; index < 6 ; index = index + 1)

 printf("The value of the index is %d\n", index);

 return 0;

}

/* Result of execution

The value of the index is 0

The value of the index is 1

The value of the index is 2

The value of the index is 3

The value of the index is 4

The value of the index is 5

*/

Ifelse

 /* Chapter 3 - Program 4 - IFELSE.C */

/* This is an example of the if and the if-else statements */

#include <stdio.h>

int main()

{

int data;

 for(data = 0 ; data < 10 ; data = data + 1)

 {

 if (data == 2)

 printf("Data is now equal to %d\n", data);

 if (data < 5)

 printf("Data is now %d, which is less than 5\n", data);

 else

 printf("Data is now %d, which is greater than 4\n", data);

 } /* end of for loop */

 return 0;

}

/* Result of execution

Data is now 0, which is less than 5

Data is now 1, which is less than 5

Data is now equal to 2

Data is now 2, which is less than 5

Data is now 3, which is less than 5

Data is now 4, which is less than 5

Data is now 5, which is greater than 4

Data is now 6, which is greater than 4

Data is now 7, which is greater than 4

Data is now 8, which is greater than 4

Data is now 9, which is greater than 4

*/

Breakcon

 /* Chapter 3 - Program 5 - BREAKCON.C */

#include <stdio.h>

int main()

{

int xx;

 for(xx = 5 ; xx < 15 ; xx = xx + 1)

 {

 if (xx == 8)

 break;

 printf("In the break loop, xx is now %d\n", xx);

 }

 for(xx = 5 ; xx < 15 ; xx = xx + 1)

 {

 if (xx == 8)

 continue;

 printf("In the continue loop, xx is now %d\n", xx);

 }

 return 0;

}

/* Result of execution

In the break loop, xx is now 5

In the break loop, xx is now 6

In the break loop, xx is now 7

In the continue loop, xx is now 5

In the continue loop, xx is now 6

In the continue loop, xx is now 7

In the continue loop, xx is now 9

In the continue loop, xx is now 10

In the continue loop, xx is now 11

In the continue loop, xx is now 12

In the continue loop, xx is now 13

In the continue loop, xx is now 14

*/

Switch

 /* Chapter 3 - Program 6 - SWITCH.C */

#include <stdio.h>

int main()

{

int truck;

 for (truck = 3 ; truck < 13 ; truck = truck + 1)

 {

 switch (truck)

 {

 case 3 : printf("The value is three\n");

 break;

 case 4 : printf("The value is four\n");

 break;

 case 5 :

 case 6 :

 case 7 :

 case 8 : printf("The value is between 5 and 8\n");

 break;

 case 11 : printf("The value is eleven\n");

 break;

 default : printf("It is one of the undefined values\n");

 break;

 } /* end of switch */

 } /* end of for loop */

 return 0;

}

/* Result of execution

The value is three

The value is four

The value is between 5 and 8

The value is between 5 and 8

The value is between 5 and 8

The value is between 5 and 8

It is one of the undefined values

It is one of the undefined values

The value is eleven

It is one of the undefined values

*/

Gotoex

 /* Chapter 3 - Program 7 - GOTOEX.C */

#include <stdio.h>

int main()

{

int dog, cat, pig;

 goto real_start;

 some_where:

 printf("This is another line of the mess.\n");

 goto stop_it;

/* the following section is the only section with a useable goto */

 real_start:

 for(dog = 1 ; dog < 6 ; dog = dog + 1)

 {

 for(cat = 1 ; cat < 6 ; cat = cat + 1)

 {

 for(pig = 1 ; pig < 4 ; pig = pig + 1)

 {

 printf("Dog = %d Cat = %d Pig = %d\n", dog, cat, pig);

 if ((dog + cat + pig) > 8) goto enough;

 };

 };

 };

 enough: printf("Those are enough animals for now.\n");

/* this is the end of the section with a useable goto statement */

 printf("\nThis is the first line out of the spaghetti code.\n");

 goto there;

 where:

 printf("This is the third line of spaghetti.\n");

 goto some_where;

 there:

 printf("This is the second line of the spaghetti code.\n");

 goto where;

 stop_it:

 printf("This is the last line of this mess.\n");

 return 0;

}

/* Result of execution

Dog = 1 Cat = 1 Pig = 1

Dog = 1 Cat = 1 Pig = 2

Dog = 1 Cat = 1 Pig = 3

Dog = 1 Cat = 2 Pig = 1

Dog = 1 Cat = 2 Pig = 2

Dog = 1 Cat = 2 Pig = 3

Dog = 1 Cat = 3 Pig = 1

Dog = 1 Cat = 3 Pig = 2

Dog = 1 Cat = 3 Pig = 3

Dog = 1 Cat = 4 Pig = 1

Dog = 1 Cat = 4 Pig = 2

Dog = 1 Cat = 4 Pig = 3

Dog = 1 Cat = 5 Pig = 1

Dog = 1 Cat = 5 Pig = 2

Dog = 1 Cat = 5 Pig = 3

Those are enough animals for now.

This is the first line out of the spaghetti code.

This is the second line of the spaghetti code.

This is the third line of spaghetti.

This is another line of the mess.

This is the last line of this mess.

*/

Tempconv

 /* Chapter 3 - Program 8 - TEMPCONV.C */

/**/

/* */

/* This is a temperature conversion program written in */

/* the C programming language. This program generates */

/* and displays a table of fahrenheit and centigrade */

/* temperatures, and lists the freezing and boiling */

/* of water. */

/* */

/**/

#include <stdio.h>

int main()

{

int count; /* a loop control variable */

int fahrenheit; /* the temperature in fahrenheit degrees */

int centigrade; /* the temperature in centigrade degrees */

 printf("Centigrade to Fahrenheit temperature table\n\n");

 for(count = -2 ; count <= 12 ; count = count + 1)

 {

 centigrade = 10 * count;

 fahrenheit = 32 + (centigrade * 9) / 5;

 printf(" C =%4d F =%4d ", centigrade, fahrenheit);

 if (centigrade == 0)

 printf(" Freezing point of water");

 if (centigrade == 100)

 printf(" Boiling point of water");

 printf("\n");

 } /* end of for loop */

 return 0;

}

/* Result of execution

Centigrade to Fahrenheit temperature table

 C = -20 F = -4

 C = -10 F = 14

 C = 0 F = 32 Freezing point of water

 C = 10 F = 50

 C = 20 F = 68

 C = 30 F = 86

 C = 40 F = 104

 C = 50 F = 122

 C = 60 F = 140

 C = 70 F = 158

 C = 80 F = 176

 C = 90 F = 194

 C = 100 F = 212 Boiling point of water

 C = 110 F = 230

 C = 120 F = 248

*/

Dumbconv

 /* Chapter 3 - Program 9 - DUMBCONV.C*/

#include <stdio.h>

int main()

{

int x1, x2, x3;

 printf("Centigrade to Fahrenheit temperature table\n\n");

 for(x1 = -2 ; x1 <= 12 ; x1 = x1 + 1)

 {

 x3 = 10 * x1;

 x2 = 32 + (x3 * 9) / 5;

 printf(" C =%4d F =%4d ", x3, x2);

 if (x3 == 0)

 printf(" Freezing point of water");

 if (x3 == 100)

 printf(" Boiling point of water");

 printf("\n");

 }

 return 0;

}

/* Result of execution

Centigrade to Fahrenheit temperature table

 C = -20 F = -4

 C = -10 F = 14

 C = 0 F = 32 Freezing point of water

 C = 10 F = 50

 C = 20 F = 68

 C = 30 F = 86

 C = 40 F = 104

 C = 50 F = 122

 C = 60 F = 140

 C = 70 F = 158

 C = 80 F = 176

 C = 90 F = 194

 C = 100 F = 212 Boiling point of water

 C = 110 F = 230

 C = 120 F = 248

*/

Style1

 /* Chapter 3 - Program 10 - STYLE1.C */

/* STYLE1.C - Style illustration file */

/* copyright - Coronado Enterprises - 1996 */

/* This program does nothing useful as far as being an executable */

/* program. It is intended to be simply a guide to style. Since */

/* style is realy a matter of personal taste, there are many */

/* possible styles that a C programmer could adopt. Since it is */

/* assumed that the student is a relatively new C programmer, he */

/* has not yet developed a good style. This program is intended */

/* to help with that task. This header block is intended to give */

/* a good illustration of a title block to begin a program. */

#include <stdio.h>

int main()

{

int index;

int count = 5;

int loop_count;

 /* The following control statements illustrate one way to */

 /* format your control statements. You will notice that */

 /* the beginning brace used as a block delimiter is placed */

 /* at the end of the control statement. The end brace is */

 /* lined up under the control word when the block is term- */

 /* inated. This style appears in some of the literature */

 /* which contains C source code. */

 /* Note also that the block format for these comments is */

 /* only one of many possible styles also. */

 for (index = 0 ; index < 7 ; index = index + 1) {

 printf("The value of ");

 printf("index is %d\n", index);

 if (count < 5) {

 printf("The value of count is %d ", count);

 printf(" this is less than 5\n");

 } else {

 loop_count = 0;

 do {

 printf("The value of loop_count is %d\n", loop_count);

 loop_count = loop_count + 1;

 } while (loop_count < 3);

 printf("The value of count is %d ", count);

 printf(" this is not less than 5\n");

 }

 }

 /***/

 /* The following style is another very popular wy to format */

 /* control statements. In this style, the opening brace */

 /* for a control block is placed on a line of its own but */

 /* still lined up under the keyword for the control block. */

 /* This is still very clear, and quite popular. */

 /* Note the slight change in the comment block. This style */

 /* is very popular. */

 /***/

 for (index = 0 ; index < 7 ; index = index + 1)

 {

 printf("The value of ");

 printf("index is %d\n", index);

 if (count < 5)

 {

 printf("The value of count is %d ", count);

 printf(" this is less than 5\n");

 }

 else

 {

 loop_count = 0;

 do

 {

 printf("The value of loop_count is %d\n", loop_count);

 loop_count = loop_count + 1;

 } while (loop_count < 3);

 printf("The value of count is %d ", count);

 printf(" this is not less than 5\n");

 }

 }

 /* The following block formatting style is used quite often

 * in the literature, but it is not very clear to this

 * author, so it is never the style method of choice by him.

 * Some programmers swear by it and think it is the only

 * valid way to format control statements.

 * This form of comment block is very common, but there seems

 * to be no end to the slight variations of this style. You

 * should pick a style, and use it until you find something

 * else that appeals to you.

 */

 for (index = 0 ; index < 7 ; index = index + 1)

 {

 printf("The value of ");

 printf("index is %d\n", index);

 if (count < 5)

 {

 printf("The value of count is %d ", count);

 printf(" this is less than 5\n");

 }

 else

 {

 loop_count = 0;

 do

 {

 printf("The value of loop_count is %d\n", loop_count);

 loop_count = loop_count + 1;

 } while (loop_count < 3);

 printf("The value of count is %d ", count);

 printf(" this is not less than 5\n");

 }

 }

 return 0;

/*

 Considerable effort has been put into the source code for the

 example programs in this tutorial. As you work your way through

 the example programs pay attention to the formatting style used

 throughout. You have a lot to gain by choosing and using a very

 consistent programming style.

 This is yet one more way to format comments. You will develop a

 style of your own fairly quickly.

*/

}

/* Result of execution

(There is a lot of meaningless printout, but the output is not of

much concern with this program.)

*/

Intasign

 /* Chapter 4 - Program 1 - INTASIGN.C */

/* This program will illustrate the assignment statements */

int main()

{

int a, b, c; /* Integer variables for examples */

 a = 12;

 b = 3;

 c = a + b; /* simple addition */

 c = a - b; /* simple subtraction */

 c = a * b; /* simple multiplication */

 c = a / b; /* simple division */

 c = a % b; /* simple modulo (remainder) */

 c = 12*a + b/2 - a*b*2/(a*c + b*2);

 c = c/4+13*(a + b)/3 - a*b + 2*a*a;

 a = a + 1; /* incrementing a variable */

 b = b * 5;

 a = b = c = 20; /* multiple assignment */

 a = b = c = a + b * c/ 3;

 a = (b = (c = 20)); /* Identical to line 22 */

 return 0;

}

/* Result of execution

(No output from this program.)

*/

Mortypes

 /* Chapter 4 - Program 2 - MORTYPES.C */

/* The purpose of this file is to introduce additional data types */

int main()

{

int a, b, c; /* -32768 to 32767 with no decimal point */

char x, y, z; /* -128 to 127 with no decimal point */

float num, toy, thing; /* 3.4E-38 to 3.4E+38 with decimal point */

 a = b = c = -27;

 x = y = z = 'A';

 num = toy = thing = 3.6792;

 a = y; /* a is now 65 (character A) */

 x = b; /* x is now -27 */

 num = b; /* num will now be -27.00 */

 a = toy; /* a will now be 3 */

 return 0;

}

/* Result of execution

(No output from this program.)

*/

Lottypes

 /* Chapter 4 - Program 3 - LOTTYPES.C */

#include <stdio.h>

int main()

{

int a; /* simple integer type */

long int b; /* long integer type */

short int c; /* short integer type */

unsigned int d; /* unsigned integer type */

char e; /* character type */

float f; /* floating point type */

double g; /* double precision floating point */

 a = 1023;

 b = 2222;

 c = 123;

 d = 1234;

 e = 'X';

 f = 3.14159;

 g = 3.1415926535898;

 printf("a = %d\n", a); /* decimal output */

 printf("a = %o\n", a); /* octal output */

 printf("a = %x\n", a); /* hexadecimal output */

 printf("b = %ld\n", b); /* decimal long output */

 printf("c = %d\n", c); /* decimal short output */

 printf("d = %u\n", d); /* unsigned output */

 printf("e = %c\n", e); /* character output */

 printf("f = %f\n", f); /* floating output */

 printf("g = %f\n", g); /* double float output */

 printf("\n");

 printf("a = %d\n", a); /* simple int output */

 printf("a = %7d\n", a); /* use a field width of 7 */

 printf("a = %-7d\n", a); /* left justify in field of 7 */

 c = 5;

 d = 8;

 printf("a = %*d\n", c, a); /* use a field width of 5 */

 printf("a = %*d\n", d, a); /* use a field width of 8 */

 printf("\n");

 printf("f = %f\n", f); /* simple float output */

 printf("f = %12f\n", f); /* use field width of 12 */

 printf("f = %12.3f\n", f); /* use 3 decimal places */

 printf("f = %12.5f\n", f); /* use 5 decimal places */

 printf("f = %-12.5f\n", f); /* left justify in field */

 return 0;

}

/* Result of execution

a = 1023

a = 1777

a = 3ff

b = 2222

c = 123

d = 1234

e = X

f = 3.141590

g = 3.141593

a = 1023

a = 1023

a = 1023

a = 1023

a = 1023

f = 3.141590

f = 3.141590

f = 3.142

f = 3.14159

f = 3.14159

*/

Combine

 /* Chapter 4 - Program 4 - COMBINE.C */

int main()

{

int a = 2;

float x = 17.1, y = 8.95, z;

char c;

 c = (char)a + (char)x;

 c = (char)(a + (int)x);

 c = (char)(a + x);

 c = a + x;

 z = (float)((int)x * (int)y);

 z = (float)((int)(x * y));

 z = x * y;

 return 0;

}

/* Result of execution

 (There is no output from this program)

*/

Compares

 /* Chapter 4 - Program 5 - COMPARES.C */

int main() /* This file will illustrate logical compares */

{

int x = 11, y = 11, z = 11;

char a = 40, b = 40, c = 40;

float r = 12.987, s = 12.987, t = 12.987;

 /* First group of compare statements */

 if (x == y) z = -13; /* This will set z = -13 */

 if (x > z) a = 'A'; /* This will set a = 65 */

 if (!(x > z)) a = 'B'; /* This will change nothing */

 if (b <= c) r = 0.0; /* This will set r = 0.0 */

 if (r != s) t = c/2; /* This will set t = 20 */

 /* Second group of compare statements */

 if (x = (r != s)) z = 1000; /* This will set x = some positive

 number and z = 1000 */

 if (x = y) z = 222; /* This sets x = y, and z = 222 */

 if (x != 0) z = 333; /* This sets z = 333 */

 if (x) z = 444; /* This sets z = 444 */

 /* Third group of compare statements */

 x = y = z = 77;

 if ((x == y) && (x == 77)) z = 33; /* This sets z = 33 */

 if ((x > y) || (z > 12)) z = 22; /* This sets z = 22 */

 if (x && y && z) z = 11; /* This sets z = 11 */

 if ((x = 1) && (y = 2) && (z = 3)) r = 12.00; /* This sets

 x = 1, y = 2, z = 3, r = 12.00 */

 if ((x == 2) && (y = 3) && (z = 4)) r = 14.56; /* This doesn't

 change anything */

 /* Fourth group of compares */

 if (x == x); z = 27.345; /* z always gets changed */

 if (x != x) z = 27.345; /* Nothing gets changed */

 if (x = 0) z = 27.345; /* This sets x = 0, z is unchanged */

 return 0;

}

/* Result of execution

(No output from this program.)

*/

Cryptic

 /* Chapter 4 - Program 6 - CRYPTIC.C */

int main()

{

int x = 0, y = 2, z = 1025;

float a = 0.0, b = 3.14159, c = -37.234;

 /* incrementing */

 x = x + 1; /* This increments x */

 x++; /* This increments x */

 ++x; /* This increments x */

 z = y++; /* z = 2, y = 3 */

 z = ++y; /* z = 4, y = 4 */

 /* decrementing */

 y = y - 1; /* This decrements y */

 y--; /* This decrements y */

 --y; /* This decrements y */

 y = 3;

 z = y--; /* z = 3, y = 2 */

 z = --y; /* z = 1, y = 1 */

 /* arithmetic op */

 a = a + 12; /* This adds 12 to a */

 a += 12; /* This adds 12 more to a */

 a *= 3.2; /* This multiplies a by 3.2 */

 a -= b; /* This subtracts b from a */

 a /= 10.0; /* This divides a by 10.0 */

 /* conditional expression */

 a = (b >= 3.0 ? 2.0 : 10.5); /* This expression */

 if (b >= 3.0) /* And this expression */

 a = 2.0; /* are identical, both */

 else /* will cause the same */

 a = 10.5; /* result. */

 c = (a > b ? a : b); /* c will have the max of a or b */

 c = (a > b ? b : a); /* c will have the min of a or b */

 return 0;

}

/* Result of execution

(No output from this program.)

*/

Sumsqres

 /* Chapter 5 - Program 1 - SUMSQRES.C */

#include <stdio.h>

int sum; /* This is a global variable */

int main()

{

int index;

 header(); /* This calls the function named header */

 for (index = 1 ; index <= 7 ; index++)

 square(index); /* This calls the square function */

 ending(); /* This calls the ending function */

 return 0;

}

header() /* This is the function named header */

{

 sum = 0; /* Initialize the variable "sum" */

 printf("This is the header for the square program\n\n");

}

square(number) /* This is the square function */

int number;

{

int numsq;

 numsq = number * number; /* This produces the square */

 sum += numsq;

 printf("The square of %d is %d\n", number, numsq);

}

ending() /* This is the ending function */

{

 printf("\nThe sum of the squares is %d\n", sum);

}

/* Result of execution

This is the header for the square program

The square of 1 is 1

The square of 2 is 4

The square of 3 is 9

The square of 4 is 16

The square of 5 is 25

The square of 6 is 36

The square of 7 is 49

The sum of the squares is 140

*/

Squares

 /* Chapter 5 - Program 2 - SQUARES.C */

#include <stdio.h>

int main() /* This is the main program */

{

int x, y;

 for(x = 0 ; x < 8 ; x++)

 {

 y = squ(x); /* go get the value of x*x */

 printf("The square of %d is %d\n", x, y);

 }

 for (x = 0 ; x < 8 ; ++x)

 printf("The square of %d is %d\n", x, squ(x));

 return 0;

}

squ(input) /* function to get the value of "input" squared */

int input;

{

int square;

 square = input * input;

 return(square); /* This sets squ() = square */

}

/* Result of execution

The square of 0 is 0

The square of 1 is 1

The square of 2 is 4

The square of 3 is 9

The square of 4 is 16

The square of 5 is 25

The square of 6 is 36

The square of 7 is 49

The square of 0 is 0

The square of 1 is 1

The square of 2 is 4

The square of 3 is 9

The square of 4 is 16

The square of 5 is 25

The square of 6 is 36

The square of 7 is 49

*/

Floatsq

 /* Chapter 5 - Program 3 - FLOATSQ.C */

#include <stdio.h>

float z; /* This is a global variable */

int main()

{

int index;

float x, y, sqr(), glsqr();

 for (index = 0 ; index <= 7 ; index++)

 {

 x = index; /* convert int to float */

 y = sqr(x); /* square x to a floating point variable */

 printf("The square of %d is %10.4f\n", index, y);

 }

 for (index = 0 ; index <= 7 ; index++)

 {

 z = index;

 y = glsqr();

 printf("The square of %d is %10.4f\n", index, y);

 }

 return 0;

}

float sqr(inval) /* square a float, return a float */

float inval;

{

float square;

 square = inval * inval;

 return(square);

}

float glsqr() /* square a float, return a float */

{

 return(z * z);

}

/* Result of execution

The square of 0 is 0.0000

The square of 1 is 1.0000

The square of 2 is 4.0000

The square of 3 is 9.0000

The square of 4 is 16.0000

The square of 5 is 25.0000

The square of 6 is 36.0000

The square of 7 is 49.0000

The square of 0 is 0.0000

The square of 1 is 1.0000

The square of 2 is 4.0000

The square of 3 is 9.0000

The square of 4 is 16.0000

The square of 5 is 25.0000

The square of 6 is 36.0000

The square of 7 is 49.0000

*/

Scope

 /* Chapter 5 - Program 4 - SCOPE.C */

#include <stdio.h> /* Prototypes for Input/Output */

void head1(void); /* Prototype for head1 */

void head2(void); /* Prototype for head2 */

void head3(void); /* Prototype for head3 */

int count; /* This is a global variable */

int main()

{

register int index; /* This variable is available only in main */

 head1();

 head2();

 head3();

 /* main "for" loop of this program */

 for (index = 8 ; index > 0 ; index--)

 {

 int stuff; /* This var is only available in these braces*/

 for (stuff = 0 ; stuff <= 6 ; stuff++)

 printf("%d ", stuff);

 printf(" index is now %d\n", index);

 }

 return 0;

}

int counter; /* This is available from this point on */

void head1(void)

{

int index; /* This variable is available only in head1 */

 index = 23;

 printf("The header1 value is %d\n", index);

}

void head2(void)

{

int count; /* This variable is available only in head2 */

 /* and it displaces the global of the same name */

 count = 53;

 printf("The header2 value is %d\n", count);

 counter = 77;

}

void head3(void)

{

 printf("The header3 value is %d\n", counter);

}

/* Result of execution

The header1 value is 23

The header2 value is 53

The header3 value is 77

0 1 2 3 4 5 6 index is now 8

0 1 2 3 4 5 6 index is now 7

0 1 2 3 4 5 6 index is now 6

0 1 2 3 4 5 6 index is now 5

0 1 2 3 4 5 6 index is now 4

0 1 2 3 4 5 6 index is now 3

0 1 2 3 4 5 6 index is now 2

0 1 2 3 4 5 6 index is now 1

*/

Recurson

 /* Chapter 5 - Program 5 - RECURSON.C */

#include <stdio.h> /* Contains prototype for printf */

void count_dn(int count); /* Prototype for count_dn */

int main()

{

int index;

 index = 8;

 count_dn(index);

 return 0;

}

void count_dn(int count)

{

 count--;

 printf("The value of the count is %d\n", count);

 if (count > 0)

 count_dn(count);

 printf("Now the count is %d\n", count);

}

/* Result of execution

The value of the count is 7

The value of the count is 6

The value of the count is 5

The value of the count is 4

The value of the count is 3

The value of the count is 2

The value of the count is 1

The value of the count is 0

Now the count is 0

Now the count is 1

Now the count is 2

Now the count is 3

Now the count is 4

Now the count is 5

Now the count is 6

Now the count is 7

*/

Backward

 /* Chapter 5 - Program 6 - BACKWARD.C */

#include <stdio.h> /* Prototypes for standard Input/Output */

#include <string.h> /* Prototypes for string operations */

void forward_and_backwards(char line_of_char[], int index);

int main()

{

char line_of_char[80];

int index = 0;

 strcpy(line_of_char, "This is a string.\n");

 forward_and_backwards(line_of_char, index);

 return 0;

}

void forward_and_backwards(char line_of_char[], int index)

{

 if (line_of_char[index])

 {

 printf("%c", line_of_char[index]);

 index++;

 forward_and_backwards(line_of_char, index);

 }

 printf("%c", line_of_char[index]);

}

/* Result of execution

This is a string.

.gnirts a si sih

*/

Floatsq2

 /* Chapter 5 - Program 7 - FLOATSQ2.C */

#include <stdio.h> /* Prototypes for standard Input/Outputs */

float sqr(float inval);

float glsqr(void);

float z; /* This is a global variable */

int main()

{

int index;

float x, y;

 for (index = 0 ; index <= 7 ; index++)

 {

 x = index; /* convert int to float */

 y = sqr(x); /* square x to a floating point variable */

 printf("The square of %d is %10.4f\n", index, y);

 }

 for (index = 0 ; index <= 7 ; index++)

 {

 z = index;

 y = glsqr();

 printf("The square of %d is %10.4f\n", index, y);

 }

 return 0;

}

float sqr(float inval) /* square a float, return a float */

{

float square;

 square = inval * inval;

 return(square);

}

float glsqr(void) /* square a float, return a float */

{

 return(z * z);

}

/* Result of execution

The square of 0 is 0.0000

The square of 1 is 1.0000

The square of 2 is 4.0000

The square of 3 is 9.0000

The square of 4 is 16.0000

The square of 5 is 25.0000

The square of 6 is 36.0000

The square of 7 is 49.0000

The square of 0 is 0.0000

The square of 1 is 1.0000

The square of 2 is 4.0000

The square of 3 is 9.0000

The square of 4 is 16.0000

The square of 5 is 25.0000

The square of 6 is 36.0000

The square of 7 is 49.0000

*/

Style2

 /* Chapter 5 - Program 8 - STYLE2.C */

/* STYLE2.C - Style illustration file */

/* copyright - Coronado Enterprises - 1996 */

/* This program does nothing useful as far as being an executable */

/* program. It is intended to be simply a guide to style. There */

/* are many ways to format a function, and this is intended to */

/* give the student some illustrations of formatting the user */

/* interface. Four functions are given, each with different */

/* definition styles. */

/* Note that each of the following functions are meaningless since */

/* they really do nothing useful other than to act as examples. */

#include <stdio.h>

 /* A main program is included simply to make it a complete C */

 /* program, even though none ofthe functions are called. */

int main()

{

 return 0;

}

/* Example 1 - A very simple definition. */

/* This function computes the area of any circle when given the */

/* radius. It is dimensionless - the result is in the same units */

/* as the input radius. */

float area_of_circle(float radius)

{

 return 3.14159 * radius * radius;

}

/* Example 2 - A simple definition with parameter definitions. */

/* This function computes the number of bricks required to build a */

/* wall of the given dimensions. */

int bricks_reqd(/* Return value = number required */

 int height, /* Height of the wall */

 int width, /* Width of the wall */

 int coverage) /* Number of bricks to cover one square */

 /* foot of the wall */

{

float total;

 total = height * width * coverage;

 return (int)total;

}

/* Example 3 - A full header with parameter definitions */

/* bricks_required

 *

 * This function computes the number of bricks required to build a

 * wall of the given dimensions.

 *

 * Input parameters

 * height The height of the desired wall

 * width The width of the desired wall

 * coverage The number of bricks required to cover one

 * square foot with the selected bricks

 *

 * Return value

 * int The number of bricks required

 */

int bricks_required(float height, float width, float coverage)

{

float total;

 total = height * width * coverage;

 return (int)total;

}

/* Example 4 - A full header for a trivial functions */

/* header

 *

 * This function prints a header for each page

 *

 * Input parameters

 * none

 *

 * Return value

 * none

 */

void header()

{

 printf("The is the header for each page of the output\n");

}

Define

 /* Chapter 6 - Program 1 - DEFINE.C */

#include <stdio.h>

#define START 0 /* Starting point of loop */

#define ENDING 9 /* Ending point of loop */

#define MAX(A,B) ((A)>(B)?(A):(B)) /* Max macro definition */

#define MIN(A,B) ((A)>(B)?(B):(A)) /* Min macro definition */

int main()

{

int index, mn, mx;

int count = 5;

 for (index = START ; index <= ENDING ; index++)

 {

 mx = MAX(index, count);

 mn = MIN(index, count);

 printf("Max is %d and min is %d\n", mx, mn);

 }

 return 0;

}

/* Result of execution

Max is 5 and min is 0

Max is 5 and min is 1

Max is 5 and min is 2

Max is 5 and min is 3

Max is 5 and min is 4

Max is 5 and min is 5

Max is 6 and min is 5

Max is 7 and min is 5

Max is 8 and min is 5

Max is 9 and min is 5

*/

Macro

 /* Chapter 6 - Program 2 - MACRO.C */

#include <stdio.h>

#define WRONG(A) A*A*A /* Wrong macro for cube */

#define CUBE(A) (A)*(A)*(A) /* Right macro for cube */

#define SQUR(A) (A)*(A) /* Right macro for square */

#define ADD_WRONG(A) (A)+(A) /* Wrong macro for addition */

#define ADD_RIGHT(A) ((A)+(A)) /* Right macro for addition */

#define START 1

#define STOP 7

int main()

{

int i, offset;

 offset = 5;

 for (i = START ; i <= STOP ; i++)

 {

 printf("The square of %3d is %4d, and its cube is %6d\n",

 i+offset, SQUR(i+offset), CUBE(i+offset));

 printf("The wrong of %3d is %6d\n",

 i+offset, WRONG(i+offset));

 }

 printf("\nNow try the addition macro's\n");

 for (i = START ; i <= STOP ; i++)

 {

 printf("Wrong addition macro = %6d, and right = %6d\n",

 5*ADD_WRONG(i), 5*ADD_RIGHT(i));

 }

 return 0;

}

/* Result of execution

The square of 6 is 36, and its cube is 216

The wrong of 6 is 16

The square of 7 is 49, and its cube is 343

The wrong of 7 is 27

The square of 8 is 64, and its cube is 512

The wrong of 8 is 38

The square of 9 is 81, and its cube is 729

The wrong of 9 is 49

The square of 10 is 100, and its cube is 1000

The wrong of 10 is 60

The square of 11 is 121, and its cube is 1331

The wrong of 11 is 71

The square of 12 is 144, and its cube is 1728

The wrong of 12 is 82

Now try the addition macro's

Wrong addition macro = 6, and right = 10

Wrong addition macro = 12, and right = 20

Wrong addition macro = 18, and right = 30

Wrong addition macro = 24, and right = 40

Wrong addition macro = 30, and right = 50

Wrong addition macro = 36, and right = 60

Wrong addition macro = 42, and right = 70

*/

Ifdef

 /* Chapter 6 - Program 3 - IFDEF.C */

#include <stdio.h>

#define OPTION_1 /* This defines the preprocessor control */

#ifdef OPTION_1

 int count_1 = 17; /* This exists only if OPTION_1 is defined */

#endif

int main()

{

int index;

 for (index = 0 ; index < 6 ; index++)

 {

 printf("In the loop, index = %d", index);

#ifdef OPTION_1

 printf(" count_1 = %d", count_1); /* This may be printed */

#endif

 printf("\n");

 }

 return 0;

}

#undef OPTION_1

/* Result of execution

(As written with OPTION_1 defined)

In the loop, index = 0 count_1 = 17

In the loop, index = 1 count_1 = 17

In the loop, index = 2 count_1 = 17

In the loop, index = 3 count_1 = 17

In the loop, index = 4 count_1 = 17

In the loop, index = 5 count_1 = 17

(Removing line 4, or commenting it out)

In the loop, index = 0

In the loop, index = 1

In the loop, index = 2

In the loop, index = 3

In the loop, index = 4

In the loop, index = 5

*/

Ifndef

 /* Chapter 6 - Program 4 - IFNDEF.C */

#include <stdio.h>

#define OPTION_1 /* This defines the preprocessor control */

#define PRINT_DATA /* If this is defined, we will print */

#ifndef OPTION_1

 int count_1 = 17; /* This exists if OPTION_1 is not defined */

#endif

int main()

{

int index;

#ifndef PRINT_DATA

 printf("No results will be printed with this version of "

 " the program IFNDEF.C\n");

#endif

 for (index = 0 ; index < 6 ; index++)

 {

#ifdef PRINT_DATA

 printf("In the loop, index = %d", index);

#ifndef OPTION_1

 printf(" count_1 = %d", count_1); /* This may be printed */

#endif

 printf("\n");

#endif

 }

 return 0;

}

/* Result of execution

(As written with OPTION_1 defined)

In the loop, index = 0

In the loop, index = 1

In the loop, index = 2

In the loop, index = 3

In the loop, index = 4

In the loop, index = 5

(Removing line 4, or commenting it out)

In the loop, index = 0 count_1 = 17

In the loop, index = 1 count_1 = 17

In the loop, index = 2 count_1 = 17

In the loop, index = 3 count_1 = 17

In the loop, index = 4 count_1 = 17

In the loop, index = 5 count_1 = 17

*/

Debugex

 /* Chapter 6 - Program 5 - DEBUGEX.C */

#include <stdio.h>

#define MY_DEBUG

int main()

{

int index;

 for (index = 0 ; index < 6 ; index++)

 {

 printf("Index is now %d", index);

 printf(" and we can process the data");

 printf("\n");

#ifdef MY_DEBUG

 printf("The processor is not debugged yet! *************\n");

#else

 for (count = 1 ; count < index * 5 ; counter++)

 {

 value = (see page 16 of the documentation)

 limit = (ask Bill about this calculation)

 Linda has a data table for the worst case analysis

 printf("count = %d, value = %d, limit = %d\n,

 count, value, limitt);

 }

#endif

 }

 return 0;

}

/* Result of execution

(As written with MY_DEBUG defined)

Index is now 0 and we can process the data

The processor is not debugged yet! *************

Index is now 1 and we can process the data

The processor is not debugged yet! *************

Index is now 2 and we can process the data

The processor is not debugged yet! *************

Index is now 3 and we can process the data

The processor is not debugged yet! *************

Index is now 4 and we can process the data

The processor is not debugged yet! *************

Index is now 5 and we can process the data

The processor is not debugged yet! *************

(Removing line 3, or commenting it out)

 (This program will not compile due to errors.)

*/

Enum

 /* Chapter 6 - Program 6 - ENUM.C */

#include <stdio.h>

int main()

{

enum {WIN, TIE, BYE, LOSE, NO_SHOW} result;

enum {SUN, MON, TUE, WED, THU, FRI, SAT} days;

 result = WIN;

 printf(" WIN = %d\n", result);

 result = LOSE;

 printf(" LOSE = %d\n", result);

 result = TIE;

 printf(" TIE = %d\n", result);

 result = BYE;

 printf(" BYE = %d\n", result);

 result = NO_SHOW;

 printf("NO_SHOW = %d\n\n", result);

 for(days = MON ; days < FRI ; days++)

 printf("The day code is %d\n", days);

 return 0;

}

/* Result of execution

 WIN = 0

 LOSE = 3

 TIE = 1

 BYE = 2

NO SHOW = 4

The day code is 1

The day code is 2

The day code is 3

The day code is 4

*/

Chrstrg

 /* Chapter 7 - Program 1 - CHRSTRG.C */

#include <stdio.h>

int main()

{

char name[5]; /* define a string of characters */

 name[0] = 'D';

 name[1] = 'a';

 name[2] = 'v';

 name[3] = 'e';

 name[4] = 0; /* Null character - end of text */

 printf("The name is %s\n", name);

 printf("One letter is %c\n", name[2]);

 printf("Part of the name is %s\n", &name[1]);

 return 0;

}

/* Result of execution

The name is Dave

One letter is v

Part of the name is ave

*/

Strings

 /* Chapter 7 - Program 2 - STRINGS.C */

#include <stdio.h>

#include <string.h>

int main()

{

char name1[12], name2[12], mixed[25];

char title[20];

 strcpy(name1, "Rosalinda");

 strcpy(name2, "Zeke");

 strcpy(title, "This is the title.");

 printf(" %s\n\n", title);

 printf("Name 1 is %s\n", name1);

 printf("Name 2 is %s\n", name2);

 if(strcmp(name1, name2) > 0) /* returns 1 if name1 > name2 */

 strcpy(mixed, name1);

 else

 strcpy(mixed, name2);

 printf("The biggest name alphabetically is %s\n", mixed);

 strcpy(mixed, name1);

 strcat(mixed, " ");

 strcat(mixed, name2);

 printf("Both names are %s\n", mixed);

 return 0;

}

/* Result of execution

 This is the title.

Name1 is Rosalinda

Name2 is Zeke

The biggest name alphabetically is Zeke

Both names are Rosalinda Zeke

*/

Intarray

 /* Chapter 7 - Program 3 - INTARRAY.C */

#include <stdio.h>

int main()

{

int values[12];

int index;

 for (index = 0 ; index < 12 ; index++)

 values[index] = 2 * (index + 4);

 for (index = 0 ; index < 12 ; index++)

 printf("The value at index = %2d is %3d\n",

 index, values[index]);

 return 0;

}

/* Result of execution

The value at index = 0 is 8

The value at index = 1 is 10

The value at index = 2 is 12

The value at index = 3 is 14

The value at index = 4 is 16

The value at index = 5 is 18

The value at index = 6 is 20

The value at index = 7 is 22

The value at index = 8 is 24

The value at index = 9 is 26

The value at index = 10 is 28

The value at index = 11 is 30

*/

bigarray

 /* Chapter 7 - Program 4 - BIGARRAY.C */

#include <stdio.h>

char name1[] = "First Program Title";

int main()

{

int index;

int stuff[12];

float weird[12];

static char name2[] = "Second Program Title";

 for (index = 0 ; index < 12 ; index++)

 {

 stuff[index] = index + 10;

 weird[index] = 12.0 * (index + 7);

 }

 printf("%s\n", name1);

 printf("%s\n\n", name2);

 for (index = 0 ; index < 12 ; index++)

 printf("%5d %5d %10.3f\n", index, stuff[index], weird[index]);

 return 0;

}

/* Result of execution

First program title

Second program title

 0 10 84.000

 1 11 96.000

 2 12 108.000

 3 13 120.000

 4 14 132.000

 5 15 144.000

 6 16 156.000

 7 17 168.000

 8 18 180.000

 9 19 192.000

 10 20 204.000

 11 21 216.000

*/

Passback

 /* Chapter 7 - Program 5 - PASSBACK.C */

#include <stdio.h>

void dosome(int list[]);

int main()

{

int index;

int matrix[20];

 for (index = 0 ; index < 20 ; index++) /* generate data */

 matrix[index] = index + 1;

 for (index = 0 ; index < 5 ; index++) /* print original data */

 printf("Start matrix[%d] = %d\n",index,matrix[index]);

 dosome(matrix); /* go to a function & modify matrix */

 for (index = 0 ; index < 5 ; index++) /* print modified matrix */

 printf("Back matrix[%d] = %d\n", index, matrix[index]);

 return 0;

}

void dosome(int list[]) /* This will illustrate returning data */

{

int i;

 for (i = 0 ; i < 5 ; i++) /* print original matrix */

 printf("Before matrix[%d] = %d\n", i, list[i]);

 for (i = 0 ; i < 20 ; i++) /* add 10 to all values */

 list[i] += 10;

 for (i = 0 ; i < 5 ; i++) /* print modified matrix */

 printf("After matrix[%d] = %d\n", i, list[i]);

}

/* Result of execution

Start matrix[0] = 1

Start matrix[1] = 2

Start matrix[2] = 3

Start matrix[3] = 4

Start matrix[4] = 5

Before matrix[0] = 1

Before matrix[1] = 2

Before matrix[2] = 3

Before matrix[3] = 4

Before matrix[4] = 5

After matrix[0] = 11

After matrix[1] = 12

After matrix[2] = 13

After matrix[3] = 14

After matrix[4] = 15

Back matrix[0] = 11

Back matrix[1] = 12

Back matrix[2] = 13

Back matrix[3] = 14

Back matrix[4] = 15

*/

Multiary

 /* Chapter 7 - Program 6 - MULTIARY.C */

#include <stdio.h>

int main()

{

int i, j;

int big[8][8], large[25][12];

 for (i = 0 ; i < 8 ; i++)

 for (j = 0 ; j < 8 ; j++)

 big[i][j] = i * j; /* This is a multiplication table */

 for (i = 0 ; i < 25 ; i++)

 for (j = 0 ; j < 12 ; j++)

 large[i][j] = i + j; /* This is an addition table */

 big[2][6] = large[24][10] * 22;

 big[2][2] = 5;

 big[big[2][2]][big[2][2]] = 177; /* this is big[5][5] = 177; */

 for (i = 0 ; i < 8 ; i++)

 {

 for (j = 0 ; j < 8 ; j++)

 printf("%5d ", big[i][j]);

 printf("\n"); /* newline for each increase in i */

 }

 return 0;

}

/* Result of execution

 0 0 0 0 0 0 0 0

 0 1 2 3 4 5 6 7

 0 2 5 6 8 10 748 14

 0 3 6 9 12 15 18 21

 0 4 8 12 16 20 24 28

 0 5 10 15 20 177 30 35

 0 6 12 18 24 30 36 42

 0 7 14 21 28 35 42 49

*/

Pointer

 /* Chapter 8 - Program 1 - POINTER.C */

#include <stdio.h>

int main() /* illustration of pointer use */

{

int index, *pt1, *pt2;

 index = 39; /* any numerical value */

 pt1 = &index; /* the address of index */

 pt2 = pt1;

 printf("The value is %d %d %d\n", index, *pt1, *pt2);

 pt1 = 13; / this changes the value of index */

 printf("The value is %d %d %d\n", index, *pt1, *pt2);

 return 0;

}

/* Result of execution

The value is 39 39 39

The value is 13 13 13

*/

Pointer2

 /* Chapter 8 - Program 2 - POINTER2.C */

#include <stdio.h>

#include <string.h>

int main()

{

char strg[40], *there, one, two;

int *pt, list[100], index;

 strcpy(strg, "This is a character string.");

 one = strg[0]; /* one and two are identical */

 two = *strg;

 printf("The first output is %c %c\n", one, two);

 one = strg[8]; /* one and two are indentical */

 two = *(strg+8);

 printf("The second output is %c %c\n", one, two);

 there = strg+10; /* strg+10 is identical to &strg[10] */

 printf("The third output is %c\n", strg[10]);

 printf("The fourth output is %c\n", *there);

 for (index = 0 ; index < 100 ; index++)

 list[index] = index + 100;

 pt = list + 27;

 printf("The fifth output is %d\n", list[27]);

 printf("The sixth output is %d\n", *pt);

 return 0;

}

/* Result of execution

The first output is T T

The second output is a a

The third output is c

The fourth output is c

The fifth output is 127

The sixth output is 127

*/

Twoway

 /* Chapter 8 - Program 3 - TWOWAY.C */

#include <stdio.h>

void fixup(int nuts, int *fruit);

int main()

{

int pecans, apples;

 pecans = 100;

 apples = 101;

 printf("The starting values are %d %d\n", pecans, apples);

 /* when we call "fixup" */

 fixup(pecans, &apples); /* we take the value of pecans */

 /* we take the address of apples */

 printf("The ending values are %d %d\n", pecans, apples);

 return 0;

}

void fixup(int nuts, int *fruit) /* nuts is an integer value */

 /* fruit points to an integer */

{

 printf("The values are %d %d\n", nuts, *fruit);

 nuts = 135;

 *fruit = 172;

 printf("The values are %d %d\n" ,nuts, *fruit);

}

/* Result of execution

The starting values are 100 101

The values are 100 101

The values are 135 172

The ending values are 100 172

*/

Funcpnt

 /* Chapter 8 - Program 4 - FUNCPNT.C */

#include <stdio.h>

void print_stuff(float data_to_ignore);

void print_message(float list_this_data);

void print_float(float data_to_print);

void (*function_pointer)(float);

int main()

{

float pi = 3.14159;

float two_pi = 2.0 * pi;

 print_stuff(pi);

 function_pointer = print_stuff;

 function_pointer(pi);

 function_pointer = print_message;

 function_pointer(two_pi);

 function_pointer(13.0);

 function_pointer = print_float;

 function_pointer(pi);

 print_float(pi);

 return 0;

}

void print_stuff(float data_to_ignore)

{

 printf("This is the print stuff function.\n");

}

void print_message(float list_this_data)

{

 printf("The data to be listed is %f\n", list_this_data);

}

void print_float(float data_to_print)

{

 printf("The data to be printed is %f\n", data_to_print);

}

/* Result of execution

 This is the print stuff function.

 This is the print stuff function.

 The data to be listed is 6.283180

 The data to be listed is 13.000000

 The data to be printed is 3.141590

 The data to be printed is 3.141590

*/

